

Developing, Packaging, and Sharing Reproducible Research Objects: The Whole Tale Approach

Bertram Ludäscher & Craig Willis

School of Information Sciences & National Center for Supercomputing Applications
University of Illinois at Urbana-Champaign

DataONE Webinar, October 8th, 2019

What is Whole Tale?

- NSF-funded Data Infrastructure Building Blocks (DIBBs) project
- Platform to create, publish, and execute tales
- Simplify process of creating & verifying reproducible computational artifacts
- https://dashboard.wholetale.org

Why Whole Tale?

- Increased reliance on computation across domains
 - new skill requirements for researchers
- Open Science changing norms and expectations
 - increased emphasis on sharing data & code
 - with transparency and reproducibility in mind!
 - => from sharing data to sharing research objects
 - FAIR principles

Whole Tale & the Elements of a ... Reproducible Computational Research Platform

Develop

Easy-to-access cloud-based computational environments

Analyze

Transparent access to research data

Share

Collaborate and **share** with others

Package

Export or publish executable research objects

Reproduce

Re-execute Review Verify Re-use

Coming soon

Whole Tale Roles and Stakeholders

Develop & Analyze with Whole Tale

- Easy to access cloud-based environments
 - Your laptop in the cloud
- Popular tools
 - + ... extensible!
- Work with data & code in transparent (provenance-enabled) ways
 - Automatic data citation
 - Automatic computational provenance capture (coming soon)

Package & Reproduce with Whole Tale

- Executable Research Objects
- Publish or export to research archives
- Compatible with new norms for reproducibility and transparency
- For verification and re-use

Whole Tale and Data

- Discover & access data from any DataONE repository
- Analyze data in Whole Tale
- Package & publish tales to Metacat-based
 - repositories
- Provenance support

What exactly is (in) a Tale?

- **✓** Tale: Research object
 - data, code, narrative, compute environment
- Executable
- Transparent
- Publishable
- Verifiable
- Remixable
- Standards-based

Whole Tale Platform Overview

Data SNE

- Authenticate using your institutional identity
- Access commonly-used computational environments
- Easily **customize** your environment (via repo2docker)
- Reference and access externally registered data

- Create or upload your data and code
- Add metadata (including provenance information)
- Submit code, data, and environment to archival repository
- Get a persistent identifier
- Share for verification and re-use

Tale Creation Workflow

Demo: Analyzing Seal Migration Patterns

A research team is preparing to publish a manuscript describing a computational model for estimating animal movement paths from telemetry data:

- Analysis and visualization in RStudio
- Existing routines stored in local R files
- Analysis requires specialized R packages
- Publish results for the community in DataONE

<u>Live Demo or Demo Video</u>

Based on: J.M. London and D.S.Johnson. Alaska bearded and spotted seal example dataset and analysis. https://github.com/jmlondon/crwexampleakbs, 2019

Key features

Supported environments

- Extension to Binder's repo2docker
 - Jupyter, JupyterLab
 - RStudio (based on Rocker Project)
 - OpenRefine
- Coming soon:
 - Matlab, Stata

Key features

Supported data repositories

- Register data from supported research data repositories
- Referenced data is cited
 - Ideally eventually contributing to citation counts
- Publish tales back to research repositories

Coming Soon:

Key features

Export to BagIt-RO

- BagIt: archival format
- Re-runnable in WT
- BagIt-RO
 - Open archival format
 - Research Object support
 - Extended for Big Data

```
tale/
   bagit.txt
   bag-info.txt
   data/
       workspace/
           run.py
           LICENSE
           requirements.txt
           output.csv
   LICENSE
   metadata/
       manifest.json
   manifest-shal.txt
    start-here/
       README.md
    tagmanifest-shal.txt
```

Key features Export and Run Locally

- Natural outcome of Tale export and repo2docker
- Download a zip file (BagIt-RO)
- run-local.sh
 - Build image (repo2docker)
 - Fetch external data (bdbag)
 - Execute (Docker)

jupyter-repo2docker

Coming soon

- Publish to Zenodo, Dataverse
- Tapis/Agave data sources
- Sharing/collaboration
- Create tale from Git repository
- Image preservation
- System provenance capture
- Better user experience

Thank you! Questions?

Bertram Ludäscher ludaesch@illinois.edu

Craig Willis willis8@illinois.edu

References

Brinckman, A., Chard, K., Gaffney, N., Hategan, M., Jones, M.B., Kowalik, K., Kulasekaran, S., Ludäscher, B., Mecum, B.D., Nabrzyski, J. and Stodden, V., 2019. Computing environments for reproducibility: Capturing the "Whole Tale". Future Generation Computer Systems, 94, pp.854-867.

Chard, K., Gaffney, N., Jones, M.B., Kowalik, K., Ludäscher, B., McPhillips, T., Nabrzyski, J., Stodden, V., Taylor, I., Thelen, T., Turk, M.J. and Willis, C., 2019. Application of Baglt-Serialized Research Object Bundles for Packaging and Re-execution of Computational Analyses. In 2019 IEEE 15th International Conference on e-Science (e-Science). IEEE.

Chard, K., Gaffney, N., Jones, M.B., Kowalik, K., Ludäscher, B., Nabrzyski, J., Stodden, V., Taylor, I., Turk, M.J. and Willis, C., 2019, June. <u>Implementing Computational Reproducibility in the Whole Tale Environment</u>. In *Proceedings of the 2nd International Workshop on Practical Reproducible Evaluation of Computer Systems* (pp. 17-22). ACM.

McPhillips, T., Willis, C., Gryk, M., Nunez-Corrales, S., Ludäscher, B. 2019. Reproducibility by Other Means: Transparent Research Objects. In 2019 IEEE 15th International Conference on e-Science (e-Science). IEEE.

Mecum, B., Wyngaard, S., Willis, C., Turk, M., Thelen, T., Taylor, I., Stodden, V., Perez, D., Nabrzyski, J., Ludaescher, B. and Kulasekaran, S., 2018, December. Science, containerized: Integrating provenance and compute environments with the Whole Tale. In AGU Fall Meeting Abstracts.

Mecum, B., Jones, M.B., Vieglais, D. and Willis, C., 2018, October. Preserving Reproducibility: Provenance and Executable Containers in DataONE Data Packages. In 2018 IEEE 14th International Conference on e-Science (e-Science). IEEE.

Whole Tale Collaboration (PI Team)

- U Illinois (NCSA) Bertram Ludäscher, Victoria Stodden, Matt Turk
 - overall lead (co-operative agreement)
 - o reproducibility; provenance; open source software development; outreach
- U Chicago (Globus) Kyle Chard
 - data transfer & storage; compute; infrastructure
- UC Santa Barbara (NCEAS) Matt Jones
 - (meta-)data publishing; provenance; repositories
- U Texas, Austin (TACC) Niall Gaffney
 - compute; HTC; "big tale"; Science Gateways
- U Notre Dame (CRC) Jarek Nabrzyski
 - UX design; UI design

The Whole Team

- Adam Brinckman (Notre Dame, former Dev)
- Bertram Ludäscher (UIUC, PI)
- Bryce Mecum (UCSB, former Dev)
- Craig Willis (UIUC, Dev, tech project manager)
- Damian Perez (Notre Dame, former Dev)
- Ian Taylor (Notre Dame, SP, Dev)
- Jarek Nabrzyski (Notre Dame, co-PI)
- Joe Stubbs (U Texas, Dev)
- Kacper Kowalik (UIUC, Dev, Senior Architect)
- Kandace Turner (UIUC, former project mgr)
- Kristina Davis (Notre Dame, UI, UX)
- Kyle Chard (U Chicago, co-PI)

- MT Campbell (UIUC, project manager)
- Matt Jones (UCSB, co-PI)
- Matt Turk (UIUC, co-PI)
- Michael Lambert (UIUC, Dev)
- Mihael Hategan (U Chicago, Dev)
- Niall Gaffney (U Texas, co-PI)
- Rachel Volentine (UTK, UX)
- Sebastian Wyngaard (Notre Dame, Dev)
- Sivakumar Kulasekaran (U Texas, former Dev)
- Thomas Thelen (UCSB, Dev)
- Timothy McPhillips (UIUC, Dev)
- Victoria Stodden (UIUC, co-PI)

+ WT Summer Interns (7); WT/RDA Fellows (4+4); WG Leads (5); other collaborators