DataONE: Current Services, New Tools and Future Developments

Amber Budden

Director for Community Engagement and Outreach

Dave Vieglais Director for Development and Operations

Science and Data Challenges

MISSING DATA As research articles age, the odds of their raw data being extant drop dramatically. . Curr. Biol. <u>10.1016/j.cub.2013.11.014</u> (2013). extant (assuming author responded) 1.00 0.75 0.50 et al. org/1(0.25 Vines, T. H. e Data e 5 10 15 20 Age of paper (years)

OPEN 🗟 ACCESS Freely available online

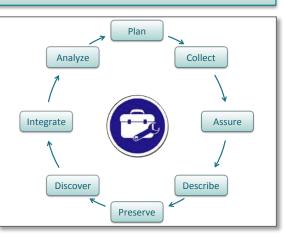
Data Sharing by Scientists: Practices and Perceptions

676 Carol Tenopir¹*, Suzie Allard¹, Kimberly Douglass¹, Arsev Umur Aydinoglu¹, Lei Wu¹, Eleanor Read², Maribeth Manoff², Mike Frame³ 1 School of Information Sciences, University of Tennessee, Rno wile. Te ressee. United States of America, 2 University of Tennessee Libraries, Uniwille, Tennessee, United States of America, 3 Center for Biological Informatics, United States Geological Survey, Dok Ridge, Ten 266 Metadata standards 95 95 96 97 26 12 21 DC ENTEDC CIE ISO Lab none

PLos one

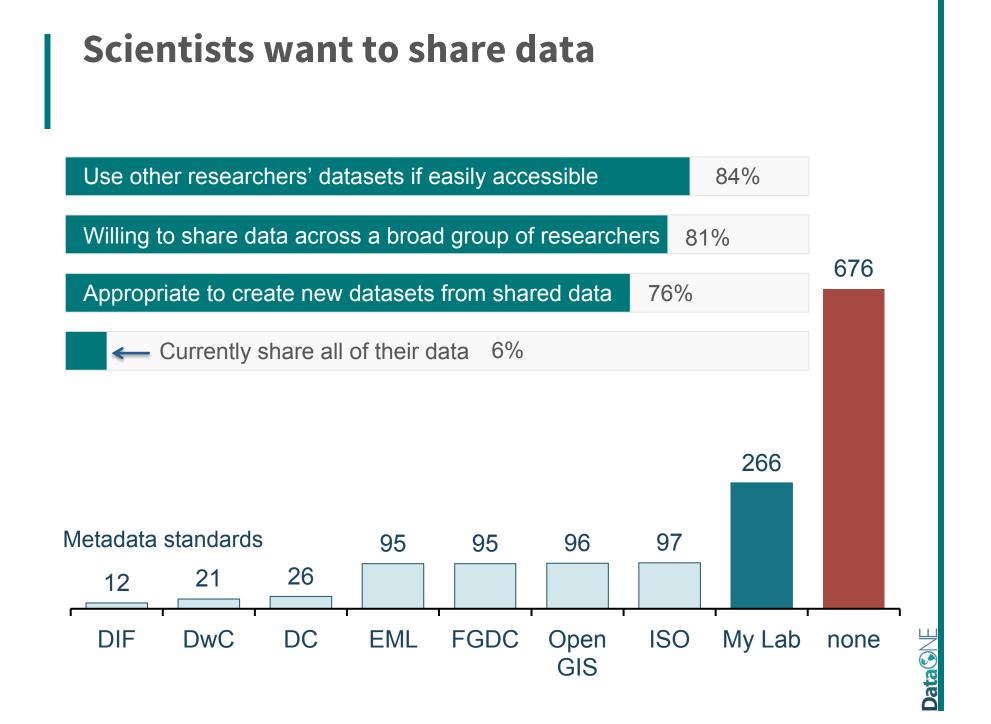
DataONE Vision and Mission

Providing universal access to data about life on earth and the environment that sustains it


1. Building community

2. Developing sustainable data discovery and interoperability solutions

3. Supporting researcher tools and services

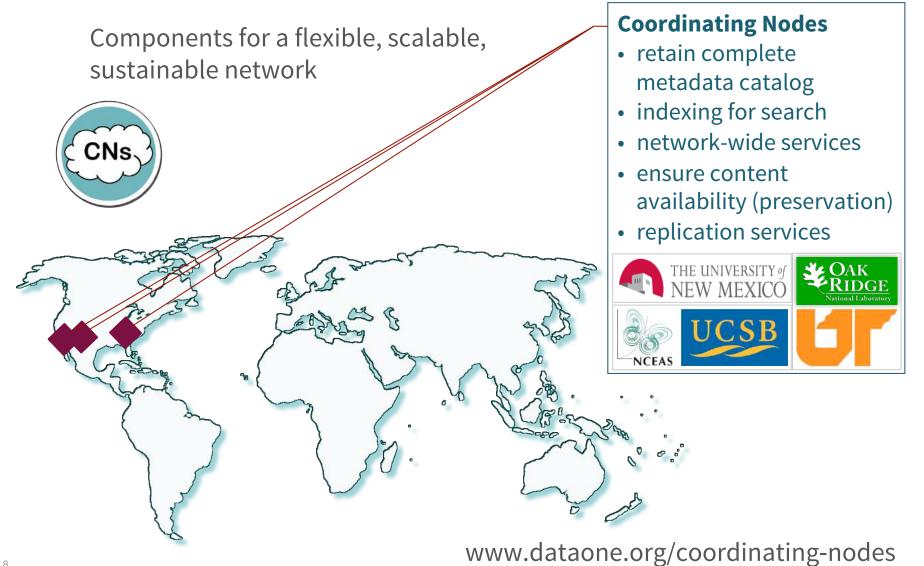


Data

Scientists want to share data

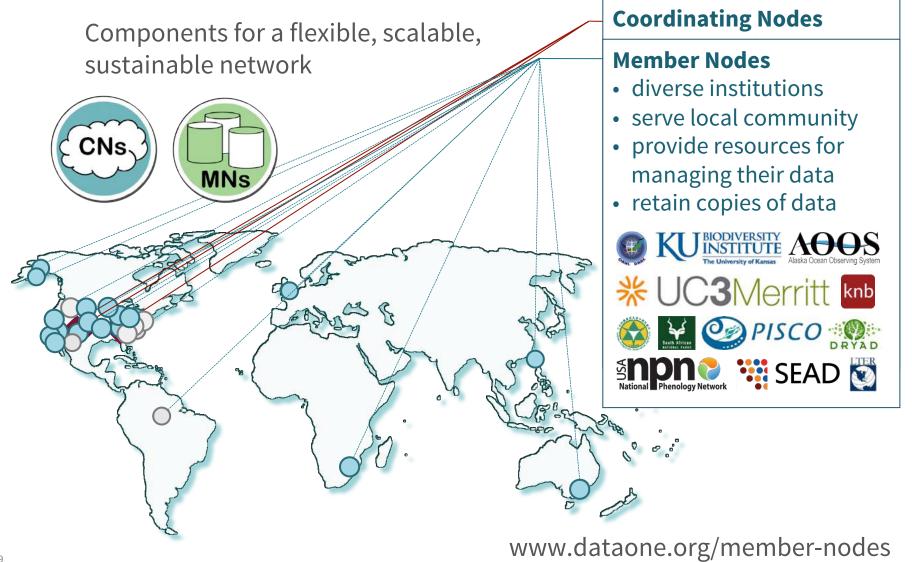
Use other researchers' datasets if easily accessible	84%
Willing to share data across a broad group of researche	ers 81%
Appropriate to create new datasets from shared data	76%
 Currently share all of their data 6% 	

Data©NE

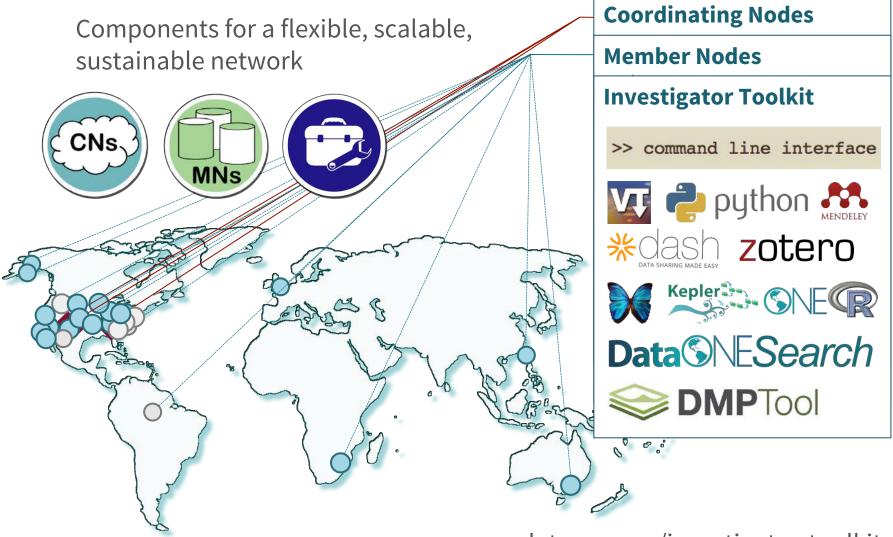


Libraries not yet providing data services

Metadata creation	67%	
Conversion of data/datasets for ingest	75%	
Selection of data/datasets for ingest	70%	
Selection of data/datasets for repository	66%	
never occasionally monthly week	kly 📕 daily	



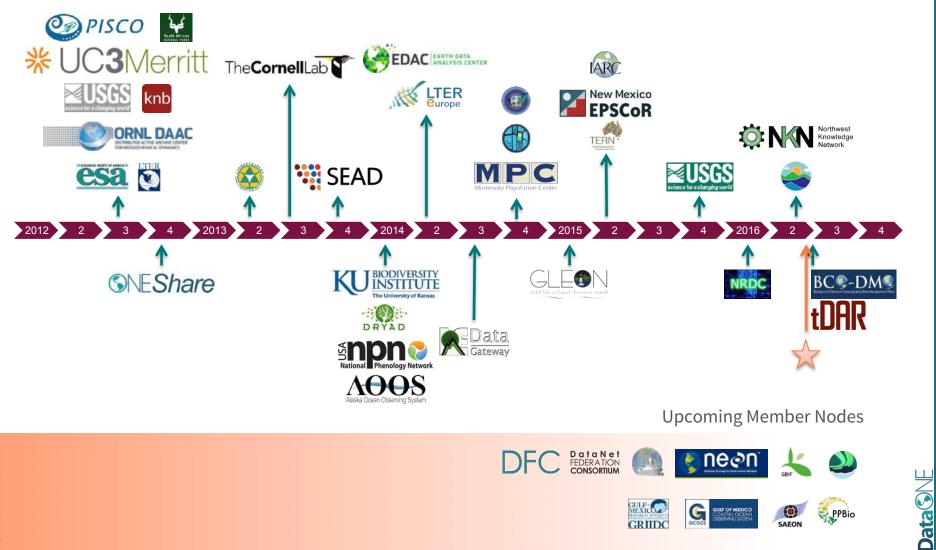
DataONE Cyberinfrastructure Coordinating Nodes



Data

DataONE Cyberinfrastructure Member Nodes

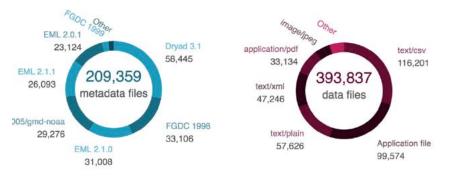
DataONE Cyberinfrastructure Investigator Toolkit



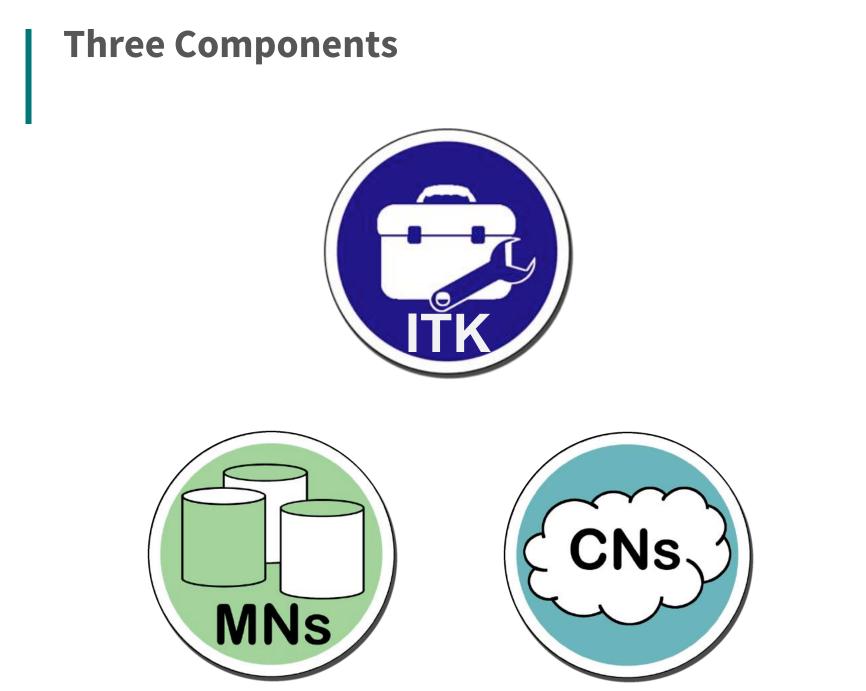
10

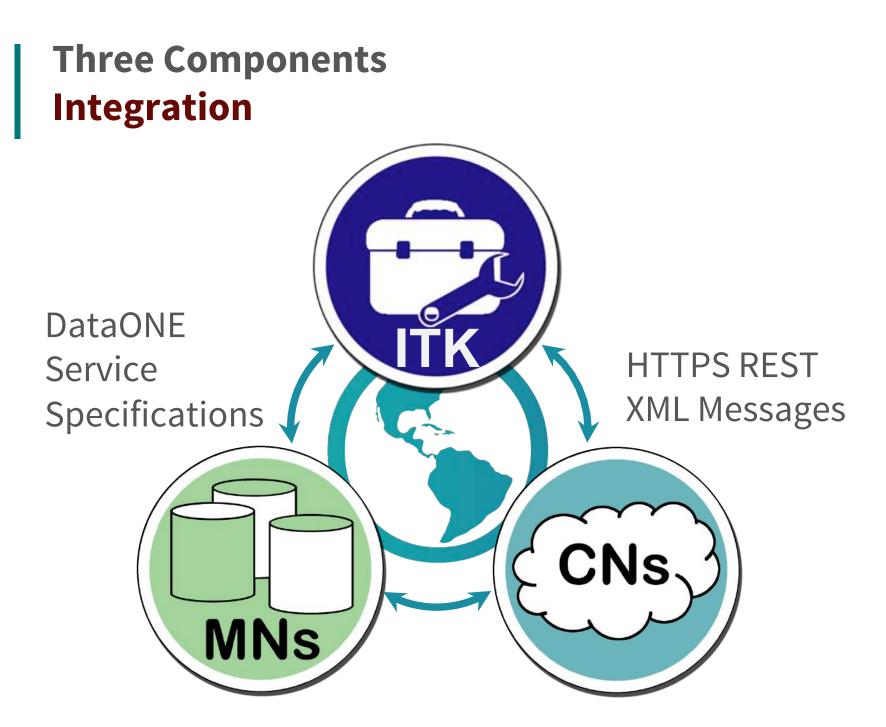
www.dataone.org/investigator-toolkit

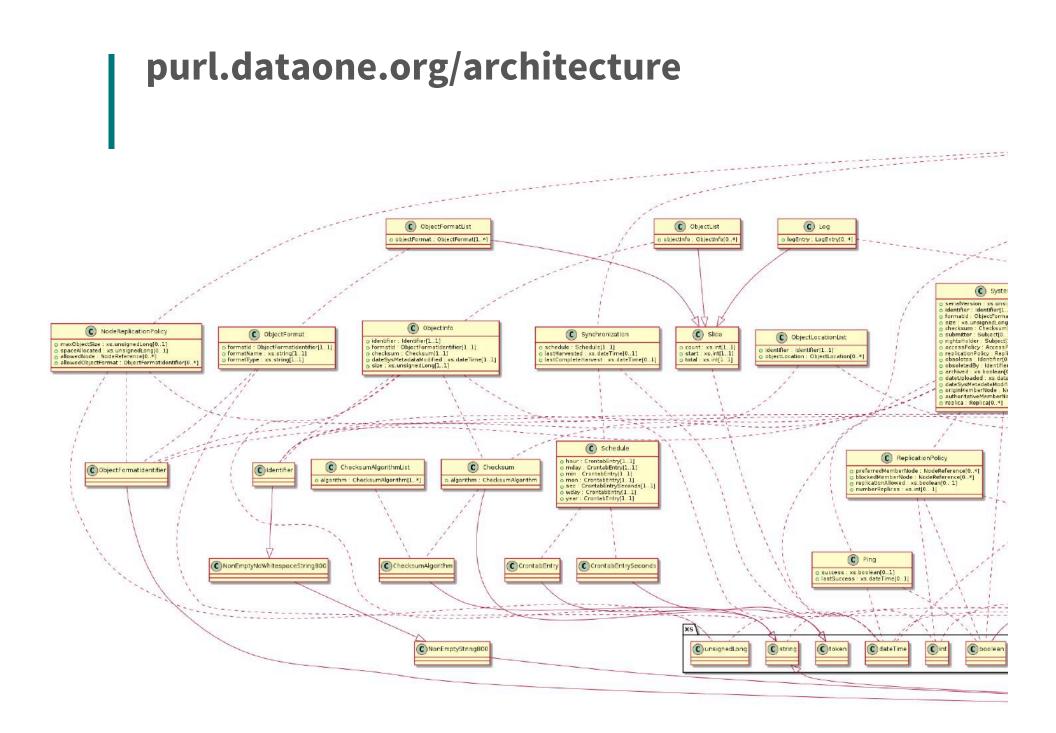
Data

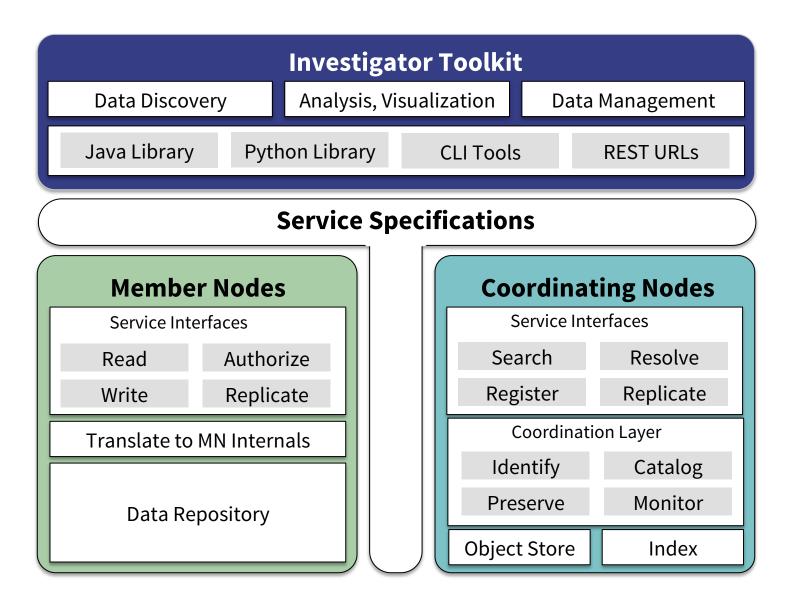

DataONE Member Nodes Current and Upcoming

We breakdown the types of metadata and data files uploaded. Only the most recent version of each file is included.

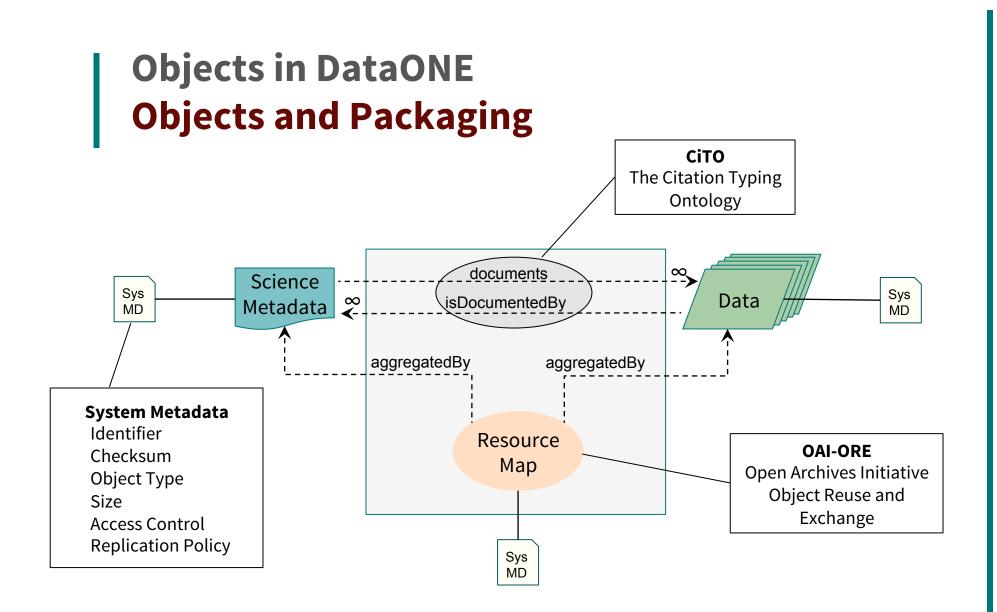


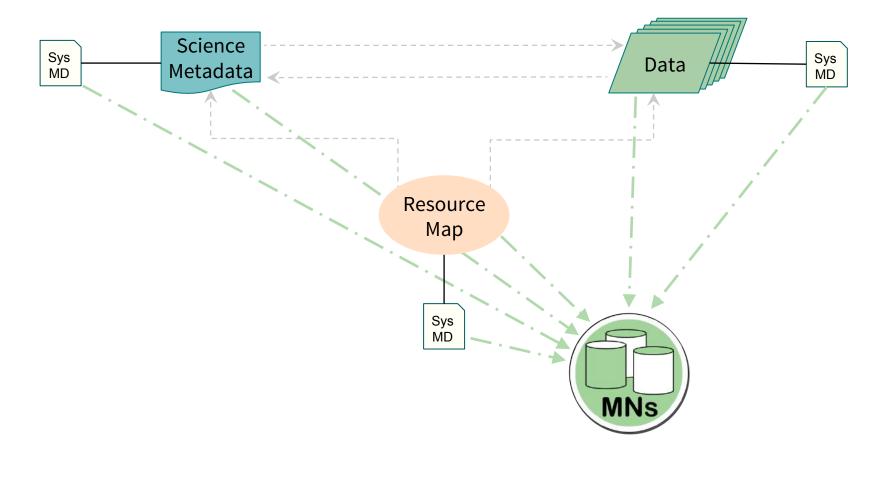


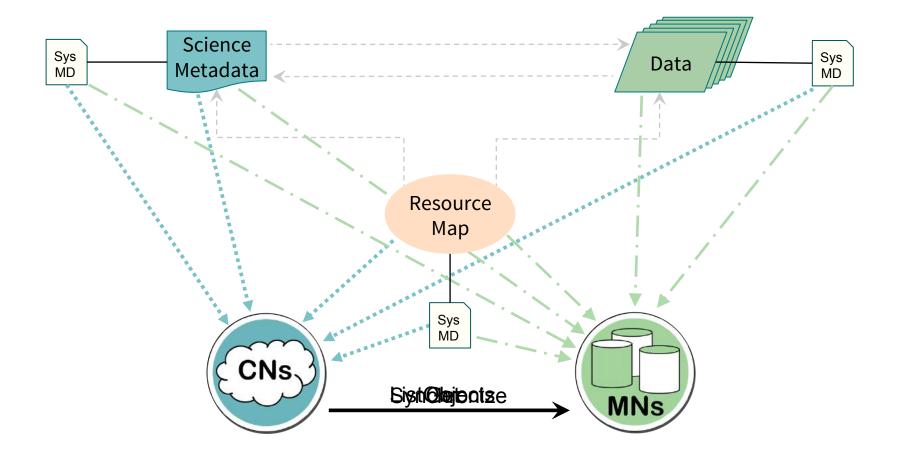

www.search.dataone.org/#profile

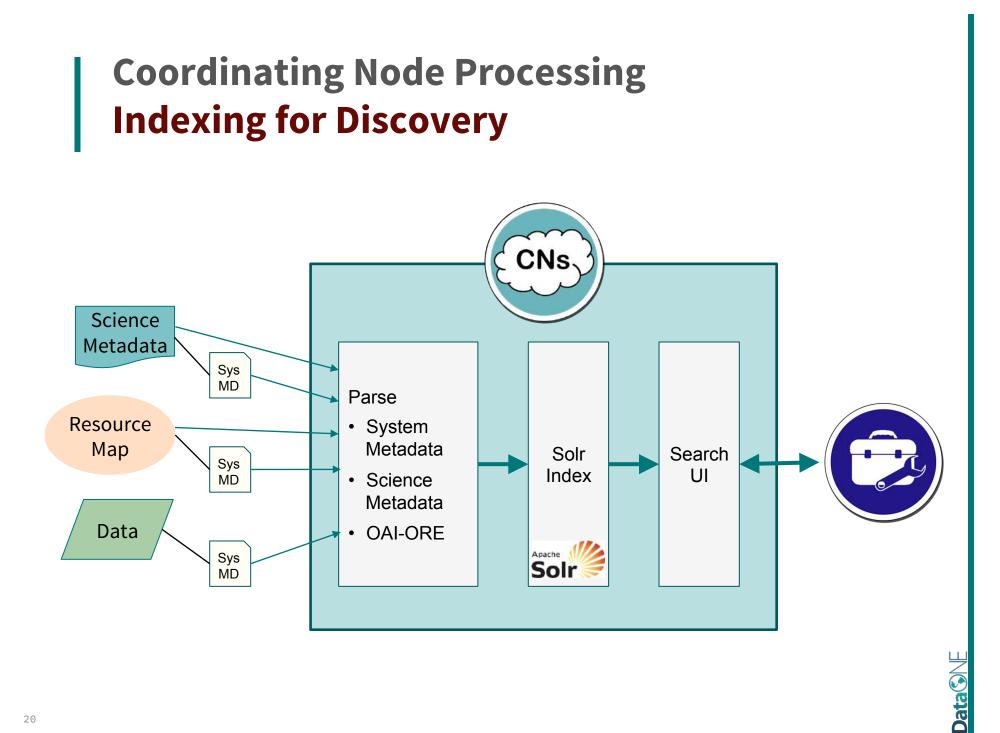

Data

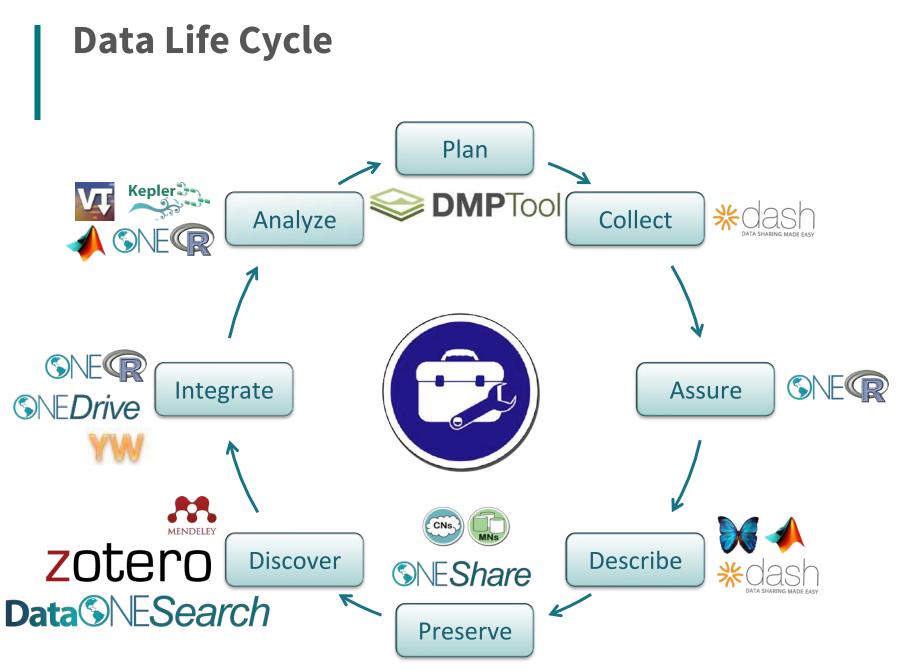
13




Shown in a High Level Design






Objects in DataONE Everything on Member Nodes

Objects in DataONE Synchronization to Coordinating Nodes

Data©\\E

Data

bit.ly/DWS_S2_04

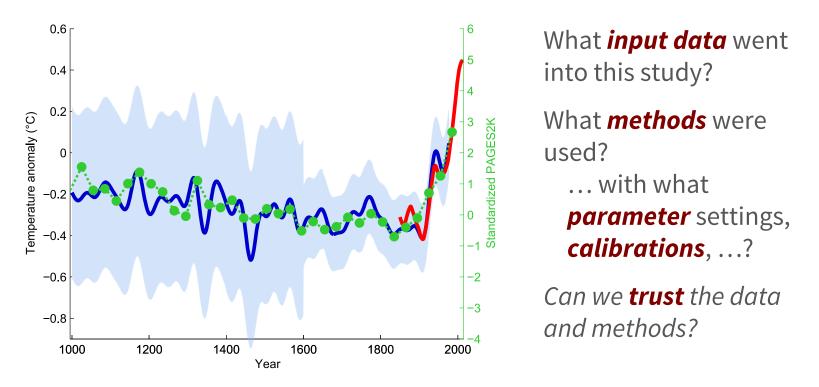
DATAONE SEARCH: Search	Summary Jump to: Doi or iD Go							Sign i	n or S	Sign up	
Search @	Datasets 1 to 25 of 210,475			Hide Map »							
Search phrase Q	1 2 3 8,419 Next Sort by Most recent	mili		and a	1	1	-	NR	A	in the second se	
Filter by:	Boisseau, Romain, Vogel, David, and Dussutour, Audrey. 2016. Data from: Habituation in non-neural organisms: evidence from slime moulds.		170 yr		5 NT	1	NU 9	3	9	12	
Data attribute	Dryad Digital Repository. http://dx.doi.org/10.5061 /dryad.51j89?ver=2016-04-06T12:26:16.039-04:00.	50	209	60	5 Ca	nada 3	5	1	5	5	
Member Node)2	127	76	7	258	88	4	- 7 5	19	
Lear	Noon, Jason, and Baum, Thomas. 2016. Figure S5. Dryad Digital Repository. http://dx.doi.org/10.5061/dryad.pb68n/5?ver=2016-04-06T12:20:15.933-04:00.	7 +	76	1521	,458	M265	ND 4879	0N	oc 59	61	
Identifier	Noon, Jason, and Baum, Thomas. 2016. Figure S3. Dryad Digital Repository.	4 -	26	8272	4316 ⁰⁸	3320	NE 114	2730	7023	221	
🚠 Taxon 🖡	DRYAD http://dx.doi.org/10.5061/dryad.pb68n/3?ver=2016-04-06T12:20:11.932-04:00.	3	62	397	37936	4240	ка мо 1600 Ан	2440	4361	407	
O Location	0	9	110	169	3665	5863	TX 459 LA	3360	680	149	
	Noon, Jason, and Baum, Thomas. 2016. Figure S1. Dryad Digital Repository. DRYAD http://dx.doi.org/10.5061/dryad.pb68n/1?ver=2016-04-06T12:20:07.964-04:00.	3	140	17	48	48 _{Mex}	193	6698	748	66	
		00	16	11	26	51	67	99	236 Pur	e to H 194	
	Noon, Jason, and Baum, Thomas. 2016. Figure S2. Dryad Digital Repository. http://dx.doi.org/10.5061/dryad.pb68n/2?ver=2016-04-06T12:20:09.946-04:00.		17 tellite Terra	11 ain 13	13 16	36 25	48	Nicaragua	44 34.Ve	66 mezu 400	
			ogle	24	26 p data @2016 0	51	27	47	Colgobia ns of Use Re	67	

DataONE is a collaboration among many partner organizations, and is funded by the US National Science Foundation (NSF) under a Cooperative Agreement. Acknowledgement: This material is based upon work supported by the National Science Foundation under Grant Numbers 0830944 and 1430508. Disclaimer: Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Benjamin Halpern, Melanie Frazier, John Potapenko, Kenneth Casey, Kellee Koenig, Catherine Longo, Julia Lowndes, Cotton Rockwood, Elizabeth Selig, Kimberly Selkoe, and Shaun Walbridge. 2015. Cumulative human impacts: raw stressor data (2008 and 2013). KNB Data Repository. doi:10.5063/F1S180FS.

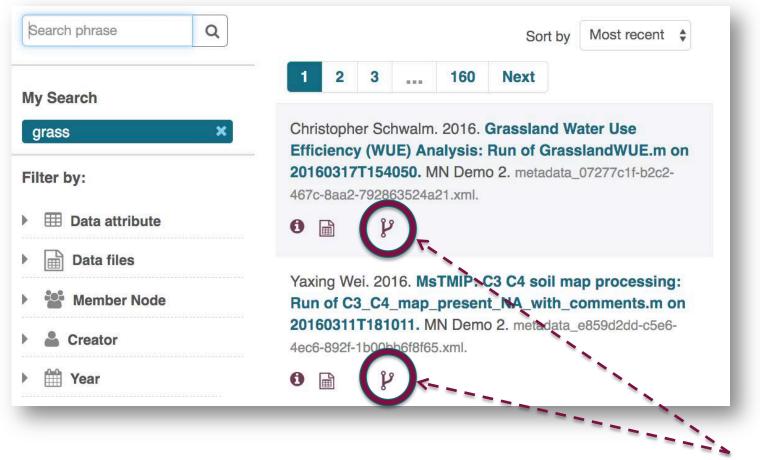
Copy Citation

							Download all 🖨
Name				File type	Size	Downloads	
Metadat	Metadata: Cumulative human impacts: raw stressor data (2008 and 2013)				30 KB	2092 views	Download 🕹
≣ raw_200	raw_2008_inorganic_mol.zip More info			ZIP folder	77 MB	213 downloads	Download 🕰
≣ raw_201	raw_2013_demersal_nondest_low_bycatch_mol.zip			ZIP folder	215 MB	208 downloads	Download 🕹
≣ raw_200)8_artisanal_fi	shing_mol.zip	More info 0	ZIP folder	46 MB	218 downloads	Download 🕹
		► Show :	34 more items in this data set				
ieneral							
	Identifier	raw_2013_uv_mol_20150714095238					
	Abstract	This is a portion of the data used to calculate 2008 a cumulative human impacts on the world's ocean. Se (2) raw stressor data (2008 and 2013); (3) stressor of time periods (2008 and 2013, scaled from 0-1); (5) p (2008 and 2013, subset of pressures updated for bo format and coordinate reference system is mollweide between 0-1) -> pressure data (stressor data after an	ven data packages are available lata rescaled by one time period ressure and cumulative impacts th time periods); (7) change in p e wgs84. Here is an overview of	e for this project d (2008 and 20 s data (2013, all pressures and c the calculation	t: (1) supple 13, scaled fro 1 pressures); sumulative in s: Raw stres	mentary data (habitat om 0-1); (4) stressor (6) pressure and cur npact (2008 to 2013). sor data -> rescaled	t data and other files); data rescaled by two mulative impacts data All raster files are .tif stressor data (values

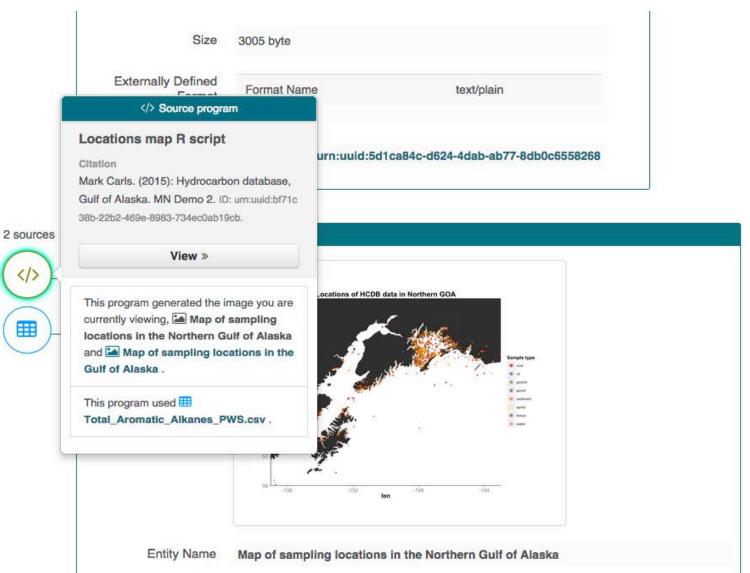

Member Node Profiles

DataSNE

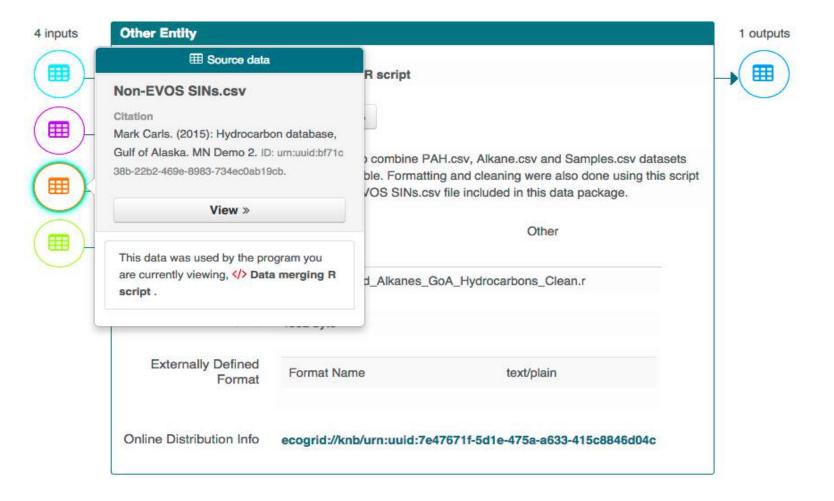
DATAONE SEARCH: Search	Summary	Jump to: D	Ol or ID Go				Sign in or	Sign up
LTER	Data	asets 1 to 5 of 54	,229					
	1	2 3	10,846 Next				Sort by Most recent	\$
		R Alan Knapp, I					man. 2012. Net Prima	ry
U.S. LTER			Data: Konza-Krug ernet.edu/package/m			9). U.S. LIER Netw	IORK.	
	0	e						
Network								
Network								
Network	_		-1-					
\bigcap		ownload	ds					
Network		OWNIOAC	dual metadata and				counts are partially	
\bigcap	1 D(The com	OWNIOAC	dual metadata and					
\bigcap		DWNIOAC	dual metadata and					
97,362 75		DWNIOac number of indivio pliant, meaning t uded.	dual metadata and	om some Interne 29,499	t robots and repea	at downloads with	in a certain time win 5,869	dow are
97,362 metadata dat		DWNIOac number of indivio pliant, meaning t uded.	dual metadata and that downloads fro	om some Interne 29,499	t robots and repe	at downloads with	in a certain time win	dow are
(97,362) (75 metadata dat 10,000 1,000		DWNIOac number of indivio pliant, meaning t uded.	dual metadata and that downloads fro	om some Interne 29,499	t robots and repe	at downloads with	in a certain time win 5,869	dow are
(97,362) (75 metadata dat 10,000 1,000		DWNIOac number of individ pliant, meaning t uded.	dual metadata and that downloads fro	om some Interne 29,499	t robots and repe	at downloads with	in a certain time win 5,869	dow are
97,362 metadata dat 10,000 1,000 10 9 10 9		DWNIOac number of individ pliant, meaning t uded.	dual metadata and that downloads fro	om some Interne 29,499	t robots and repe	17 4,359	in a certain time win 5,869	dow are


Data (S) \E

Use Provenance for Transparency, Reproducibility


- Provenance (*lineage*): track origin and processing history of data
 trust, data quality ~ audit trail for attribution, credit
- **Discovery** of data, methodologies, experiments

Dataset Provenance


Record contains provenance information

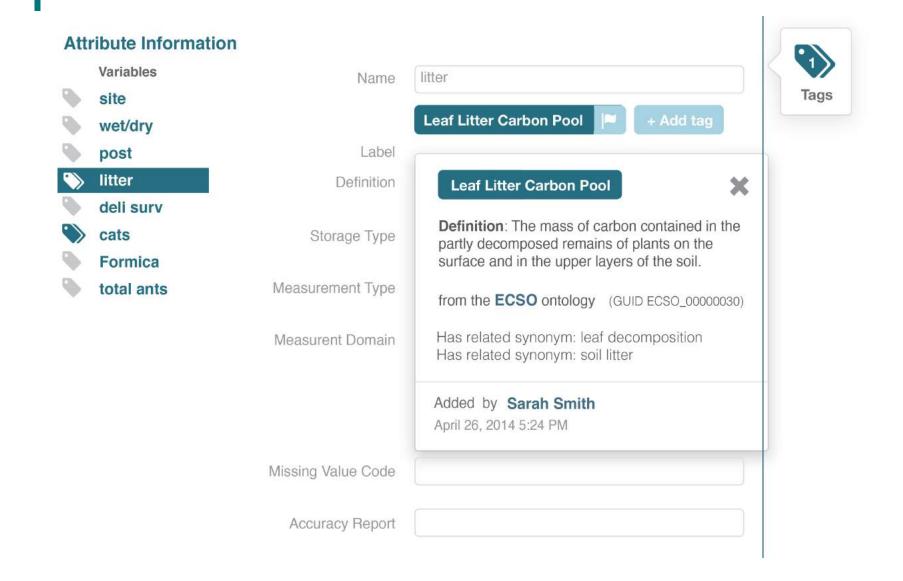
Provenance ... of Figures

Data

Provenance ... of Data

The Problem: Enabling researchers to effectively find data in DataONE

DataONE:


209,300 Metadata Records *describing over* **393,000 Data Objects** *from* **31 Member Nodes**

... and growing

Semantics For greater clarity and consistency

Displaying semantics of attribute labels

Data

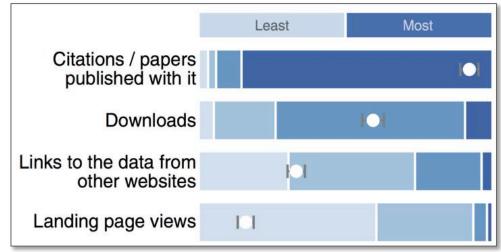
Manual annotation UI

Variables	Name	litter	S
site	Hano		Т
wet/dry		Leaf Litter Carbon Pool 📔 + Add tag	
post	Label		
litter	Definition	Add tag to litter attribute	
deli surv		Help others find this dataset by adding	
cats	Storage Type	semantic tags	
Formica		soil	
total ants	Measurement Type	Matches - Hover or mouse down for term definition soil	
Soil Layer Top	Depth	Soil Layer Top Depth	
Definition: Depth soil layer	n from soil surface to top of	soil litter	
from the ECSO c	ntology (GUID ECSO_00000056)	soil loss	
Has related syno	nvm: soil litter	soil order	

Data©\\E

Semantic search

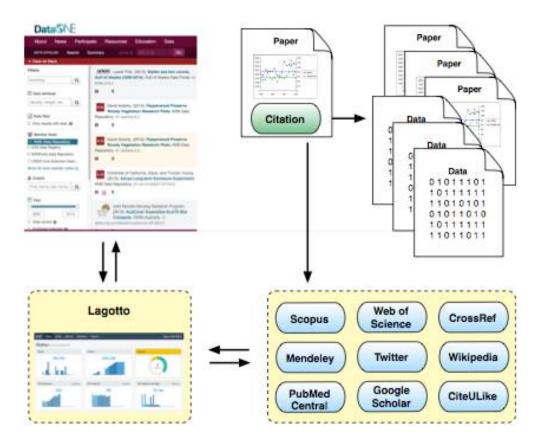
DataSNE									
About News Participat	e Resources Education Data								
DATAONE SEARCH: Search	Summary Jump to: DOI or ID Go	Sign in or Sign up							
Search @	Datasets 1 to 25 of 36,398								
Search phrase Q	1 2 3 1,456 Next	Sort by Most recent \$							
Filter by: Data attribute Annotation 	20160317T154050. MN Demo 2. metadata_07277	cessing: Run of C3_C4_map_present_NA_with_comments.m on							
carbon_nitrogen carbon_organic	20160311T181011. MN Demo 2. metadata_e859d2 *Carbon Flux	2dd-c5e6-4ec6-892f-1b00bb6f8f65.xml.							
*carbon mass Carbon Dioxide *Carbon Flux Carbon Pool Carbonate Pool	The rate at which a mass of carbon moves to or from a particular component of the ecosystem per unit time. (http://purl.dataone.org/odo/ECSO_000000	a 2010. MN Demo 2. peggym.1108.68.							
carbon oxoacid Carbon Dioxide Pool light filter	11)	and rainfall. MN Demo 2. peggym.1206.8.							
🕨 🛱 Taxon	Kruger. 2016. Kruger National Park weather an	d rainfall data 2009 until present. MN Demo 2. judithk.1056.22.							
▶	0								



Community Need Data Use Metrics

Challenge: Data citation and usage reporting are rare, difficult to find, but highly valuable

Goal: Index the science literature to provide citation and usage metrics for data and software in DataONE


How interested would you be to know each of the following about the impact of your data?

5.39

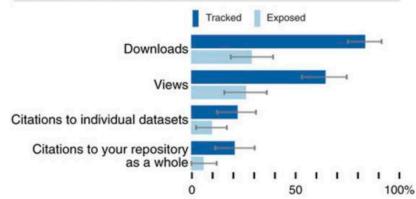
Data Use Metrics Approach

- Leverage 'Making Data Count' prototype
- Index usage and citation in papers and open access sources
- Powerful reports for users, repositories, and funders

Data Use Metrics Outputs

For users and repositories:

- Citation and usage services
 - with DataCite
 - interactive displays, reports
- Notification services
 - when cited, by whom...


Citations / papers published with it Downloads Links to the data from other websites Landing page views

е

How interested would you be to know each of

the following about the impact of your data?

f What metrics/statistics do your repository currently track and expose?

1 1

1 1

1

For funders:

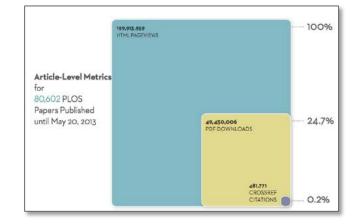
- Per-award reports
- Program-wide reports
- Impact assessments

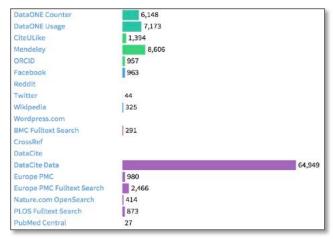
graphic from Kratz and Strasser (2015). doi: 10.1038/sdata.2015.39

Data Use Metrics Outcomes

Enable Greater Attribution

- Article level
- micro-citation


Enhance Resource Discovery


- Greater motivation to share
- More resources to explore

Build Community Engagement

Awareness of others' work

Promote Reproducible Science

bit.ly/DWS_01_03

Technical Resources

Architecture and API Documentation

purl.dataone.org/architecture

Mailing List

developers@dataone.org

IRC

irc.ecoinformatics.org #dataone

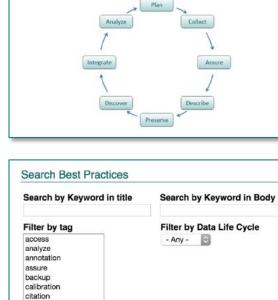
Subversion, GitHub

- repository.dataone.org/software/cicore
- github.com/DataONEorg

Previous Webinars:

dataone.org/previous-webinars

Community Engagement Education and Outreach



Best Practices Database and Primer

Best Practices Prime For students and others new to data management, we provide a Best Practices Primer as an introduction to the DataONE Best Practices database and data management in general. Public Participation in Science Research Data Management Guide

Best Practices

stage of the lifecycle or selecting keywords under search.

We also provide a Data Management Guide written specifically for the Citizen Science community that takes the users through the steps of the data lifecycle and links to various DataONE Best Practices online.

The DataONE Best Practices database provides individuals with recommendations on how to effectively work with their

data through all stages of the data lifecycle. Users can access best practices within the database by either clicking on a

coding collect You may enter multiple tags by holding

down command (control) and making your selection

Search Reset

DataSNE

Primer on Data Management: What you always wanted to know* but were afraid to ask

Carly Strasser, Robert Cook, William Michener, Amber Budden

Contents

1.	Objectiv	e of This Primer	1
2.	Why Ma	1	
	2.1.	It will benefit you and your collaborators	1
	2.2.	It will benefit the scientific community	2
	2.3.	Journals and sponsors want you to share your data	2
3.	How To	Use This Primer	2
4.	The Data	a Life Cycle: An Overview	3
5.	Data Ma	4	
	5.1	Plan	4
	5.2	Collect	4
	5.3	Assure	5
	5.4	Describe: Data Documentation	5
	5.5.	Preserve	6
	5.6.	Discover, Integrate, and Analyze	7
6.	Conclusi		
7.	Acknow	8	
8.	Reference	8	
9.	Glossary	9	

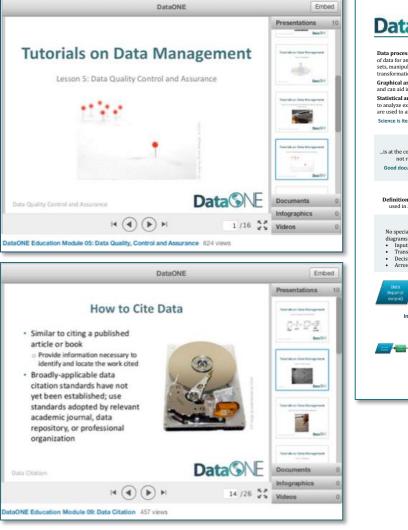
1. Objective of This Primer

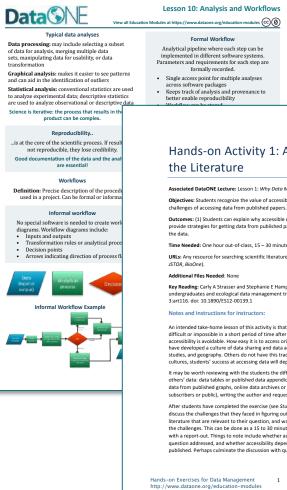
The goal of data management is to produce self-describing data sets. If you give your data to a scientist or colleague who has not been involved with your project, will they be able to make sense of it? Will they be able to use it effectively and properly? This primer describes a few fundamental data management practices that will enable you to develop a data management plan, as well as how to effectively create, organize, manage, describe, preserve and share data.

2. Why Manage Data?

2.1. It will benefit you and your collaborators

Establishing how you will collect, document, organize, manage, and preserve your data at the beginning of your research project has many benefits. You will spend less time on data management and more time on research by investing the time and energy before the first piece of data is collected. Your data also will be easier for you to find, use, and analyze, and it will be easier for your collaborators to understand and use your data. In the long term, following good data management practices means that scientists not involved with the project can find, understand, and use the data in the future. By documenting your data and recommending appropriate ways to cite your data, you can be sure to get credit for your data products and their use [1].


DataONE Best Practices Primer


Data

1

www.dataone.org

Data Management Modules

Hands-on Activity 1: Accessing Data in

Associated DataONE Lecture: Lesson 1: Why Data Management

Objectives: Students recognize the value of accessibly archived data, by experiencing the

Outcomes: (1) Students can explain why accessible data archiving is valuable. (2) Students can provide strategies for getting data from published papers, and anticipate challenges to accessing

Time Needed: One hour out-of-class, 15 - 30 minutes in-class discussion.

URLs: Any resource for searching scientific literature (e.g. Web of Science, Google Scholar,

Key Reading: Carly A Strasser and Stephanie E Hampton. 2012. The fractured lab notebook undergraduates and ecological data management training in the United States. Ecosphere

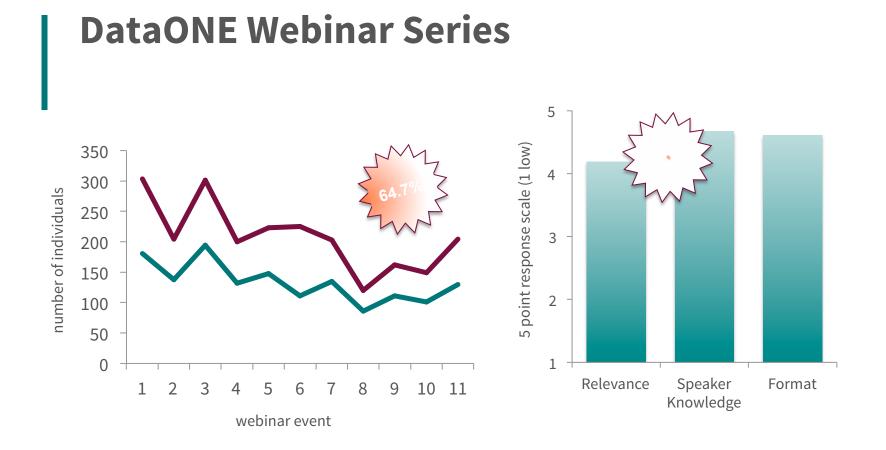
Notes and Instructions for Instructors

An intended take-home lesson of this activity is that access to valuable original data can become difficult or impossible in a short period of time after a paper is published, but this loss of accessibility is avoidable. How easy it is to access original data depends on the field: some fields have developed a culture of data sharing and data accessibility, including genetics, climate studies, and geography. Others do not have this tradition. Because of these field-specific cultures, students' success at accessing data will depend on the topic and question they chose

It may be worth reviewing with the students the different ways by which scientists access others' data: data tables or published data appendices within a paper, extracting (estimating) data from published graphs, online data archives or data streams (either restricted to journal subscribers or public), writing the author and requesting the data etc.

After students have completed the exercise (see Student Instructions, below), have students discuss the challenges that they faced in figuring out how to access data from the published literature that are relevant to their question, and ways the students came up with to deal with the challenges. This can be done as a 15 to 30 minute whole-class discussion or in small groups with a report-out. Things to note include whether accessibility to data varied depending on the question addressed, and whether accessibility depended on how long ago the paper was published. Perhaps culminate the discussion with questions about why data underlying

1

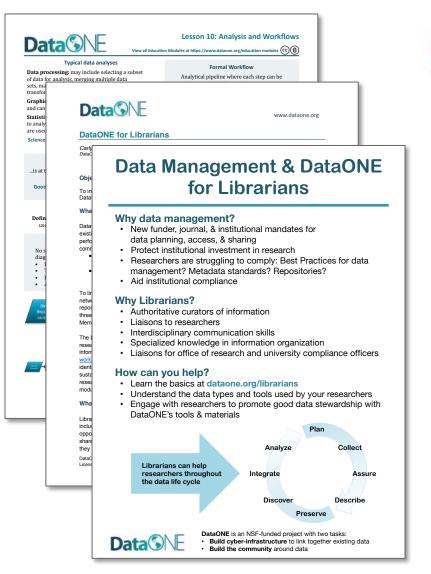


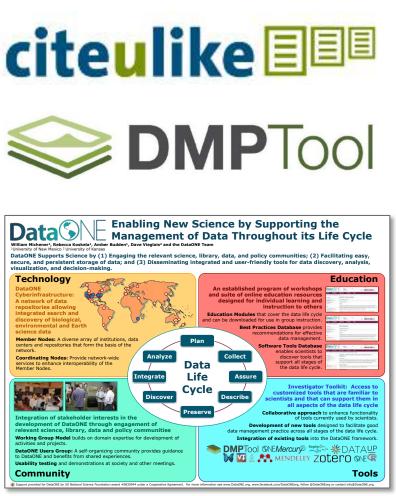
Data www.dataone.org/education-modules

Screencast Tutorials

DATAONE SEARCH: Search	Summary Jump to: DCl or ID Go							Sign	in lor s	Sign up		
Search @	Datasets 1 to 25 of 210,475			Hide Map »								
Search phrase Q	1 2 3 8,419 Next Sort by Most recent -	mill			1	1	-	1.3	A	Sec.		
Filter by:	Boisseau, Romain, Vogel, David, and Dussutour, Audrey. 2016. Data from: Habituation in non-neural organisms: evidence from slime moulds.		170		5 NT	1	9 9	3	9.5	12		
Data attribute	Dryad Digital Repository. http://dx.doi.org/10.5061 /dryad.51j89?ver=2016-04-06T12:26:16.039-04:00.	50	209	60	5 Ca	nada 3	5	1	5	5		
Member Node	Noon, Jason, and Baum, Thomas. 2016. Figure S5. Dryad Digital Repositor		127	76	7	258	88	4 0N	- 7 °	19		
Creator	DRŸAD http://dx.doi.org/10.5061/dryad.pb68n/5?ver=2016-04-06T12:20:15.933-04:00.	7 +	76	1521	,458	M265	ND 4879	1396	59	61 NB REF		
ldentifier	Noon, Jason, and Baum, Thomas. 2016. Figure S3. Dryad Digital Repository. http://dx.doi.org/10.5061/dryad.pb68n/3?ver=2016-04-06T12:20:11.932-04:00.	4 -	26	8272	4316	3320	NE 114 States	2730	7023	221		
Taxon 📐		3	62	397	37936	4240	1600 AR	2440	NC 4361	407		
Continue Continue Control C	0	9	110	169	3665	5863	TX 459 LA	3360	680	149		
	Noon, Jason, and Baum, Thomas. 2016. Figure S1. Dryad Digital Repository. http://dx.doi.org/10.5061/dryad.pb68n/1?ver=2016-04-06T12:20:07.964-04:00.	3	140	17	48	48 _{Mex}	193	6698	748	66		
		00	16	11	26	51	67	99	236 Pu	etto H 11 4 (
)	17	11	13	36	48 Gunt	enala 	44	66		
	Noon, Jason, and Baum, Thomas. 2016. Figure S2. Dryad Digital Repository. http://dx.doi.org/10.5061/dryad.pb68n/2?ver=2016-04-06T12:20:09.946-04:00.	5 Sa	tellite Terr	ain 13	16	25	18	80	34 Ve	nezu 400		
		2Go	ogle	24	26 data @2016 (51	27	47	Col39bia	67		

the views of the National Science Foundation.





Data

www.dataone.org/webinars

Librarian Outreach Kit

www.dataone.org/for-librarians

Data©NE

Other communication mechanisms

researchers are needed tracking progress, I encourage you to vis · Data-related skill development is https://rd-alliance.org.

essential · Training of and awareness-raising

In addition to the two events noted above, I also want to bring two other publications to your

ses ×4 curt × 3 tribute × 3 ta_management × 3 pin × 3 cipete × 3 1 ×2 W × 2

entrode × 11

. 5 0,0

ple & groups 🔯 badges

there! Please sign in help

Contributors

Tags

ASK YOUR OUESTION

12 .

Data

DataONE Users Group

- A self-organizing, independent group providing feedback to DataONE
- 310 members, 13 member Steering Committee, 2 Co-chairs
- Open participation and membership
- Annual summer meeting co-located with ESIP

Save the Date: DataONE Users Group Meeting

Please save July 17-18, 2016 for the open DataONE Users Group meeting to be co-located with the Summer ESIP Federation Meeting at the Friday Center, Chapel Hill, North Carolina. The DataONE Users Group (DUG) meeting will be a 2-day event featuring plenary presentations, topical breakout sessions, and community-led discussions.

Data

There is no registration fee to attend and participate in the DUG meeting.

Registration and hotel block will open in the spring, a few months before the meeting. Please visit <u>https://www.dataone.org/dataone-users-group</u> for updates and to join the DUG.

Meeting Theme and Objectives

The 2016 Meeting theme, "**Expanding Data Networks**," will focus on the new challenges and efforts in making data accessible, discoverable, and deliverable while promoting open data policies, standards, and compliance with funders' emerging data management requirements. A strong emphasis is on data synthesis and technological progress made in data network infrastructure.

The scientific program of the 2016 meeting will invite talks and posters on the following topics:

- Leveraging research data level metrics for large data repositories and data networks
- Integrating the needs and inputs of data users to advance and improve data discoverability
- Assessing the progress, impact, and success in promoting open data policies

DataONE encourages DataONE Member Nodes, data scientists, researchers, scientists, students and others to submit abstracts for posters and talks.

Abstract Submission for Posters and Talks

Please submit an abstract (250 words maximum) to <u>dugchairs@dataone.org</u> and indicate whether you prefer to present a talk or a poster. Talks will be approximately 10-20 minutes in duration, to be confirmed with development of the agenda. The poster session will be held the evening of Sunday July 17th during the reception event.

Submissions will be reviewed by the DataONE Users Group Steering Committee. Accepted abstracts will be published on the DataONE website.

Important dates

Abstract Submission Deadline: April 15th 2016 Author Notification: May 15th 2016

DUG Steering Committee: Felimon Gayanilo (co-chair), Plato Smith (co-chair), Steven Aulenbach, Amber Budden, Debora Drucker, Rebecca Koskela, Myrica McCune, Laura Moyers, Shannon Rauch, Robert Sandusky, Stephanie Simms, Heather Soyka

DataONE Users Group Meeting

July 17-18th 2016 Research Triangle, NC

Theme: Expanding Data Networks

www.DataONE.org

@DataONEorg

facebook.com/DataONEorg

vimeo.com/DataONEorg

slideshare.net/DataONEorg

aebudden@dataone.unm.edu

vieglais@ku.edu

